skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Feng, Lian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lake heatwaves (extreme hot water events) can substantially disrupt aquatic ecosystems. Although surface heatwaves are well studied, their vertical structures within lakes remain largely unexplored. Here we analyse the characteristics of subsurface lake heatwaves (extreme hot events occurring below the surface) using a spatiotemporal modelling framework. Our findings reveal that subsurface heatwaves are frequent, often longer lasting but less intense than surface events. Deep-water heatwaves (bottom heatwaves) have increased in frequency (7.2 days decade−1), duration (2.1 days decade−1) and intensity (0.2 °C days decade−1) over the past 40 years. Moreover, vertically compounding heatwaves, where extreme heat occurs simultaneously at the surface and bottom, have risen by 3.3 days decade−1. By the end of the century, changes in heatwave patterns, particularly under high emissions, are projected to intensify. These findings highlight the need for subsurface monitoring to fully understand and predict the ecological impacts of lake heatwaves. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Harmful algal blooms can produce toxins that pose threats to aquatic ecosystems and human health. In this Review, we outline the global trends in harmful algal bloom occurrence and explore the drivers, future trajectories and potential mitigation strategies. Globally, harmful algal bloom occurrence has risen since the 1980s, including a 44% increase from the 2000s to 2010s, especially in Asia and Africa. Enhanced nutrient pollution owing to urbanization, wastewater discharge and agricultural expansion are key drivers of these increases. In contrast, changes have been less substantial in high-income regions such as North America, Europe and Oceania, where policies to mitigate nutrient pollution have stabilized bloom occurrences since the 1970s. However, since the 1990s, climate warming and legacy nutrient pollution have driven a resurgence in toxic algal blooms in some US and European lakes, highlighting the inherent challenges in mitigating harmful blooms in a warming climate. Indeed, advancing research on harmful algal bloom dynamics and projections largely depends on effectively using data from multiple sources to understand environmental interactions and enhance modelling techniques. Integrated monitoring networks across various spatiotemporal scales and data-sharing frameworks are essential for improving harmful algal bloom forecasting and mitigation. 
    more » « less
  3. Abstract Phytoplankton blooms in coastal oceans can be beneficial to coastal fisheries production and ecosystem function, but can also cause major environmental problems 1,2 —yet detailed characterizations of bloom incidence and distribution are not available worldwide. Here we map daily marine coastal algal blooms between 2003 and 2020 using global satellite observations at 1-km spatial resolution. We found that algal blooms occurred in 126 out of the 153 coastal countries examined. Globally, the spatial extent (+13.2%) and frequency (+59.2%) of blooms increased significantly ( P  < 0.05) over the study period, whereas blooms weakened in tropical and subtropical areas of the Northern Hemisphere. We documented the relationship between the bloom trends and ocean circulation, and identified the stimulatory effects of recent increases in sea surface temperature. Our compilation of daily mapped coastal phytoplankton blooms provides the basis for global assessments of bloom risks and benefits, and for the formulation or evaluation of management or policy actions. 
    more » « less